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LIMIT CURRENTS IN A PLASMA BETATRON
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The radial motion of a plasma column is considered for electron
acceleration in a plasma betatron. The limit value of the relativistic
currents which can be obtained in devices of this type is computed.

G. L. Budker [1] proposed using the runaway effect in a plasma
with a strong electric field for converting a cold ring plasma into an
intense compensated beam of relativistic electrons. To confine such
a beam within an annular vacuum-chamber one can use either a beta-
tron-type magnetic field or the field of the image currents produced
in the metal shell enclosing the vacuum chamber with the electron
beam. In the latter ca'se, as estimates show, the number of accele~
rated electrons must already be considerable; this leads to an increase
in the difficulties which impede the successful acceleration of all
plasma electrons.

Accordingly, most of the experiments on accelerating plasma
electrons have employed betatron fields in devices called plasma beta-
trons [2-~4]. A feature of these accelerators is total compensation of
the space charge of the accelerated electrons and hence an increased
possibility of obtaining high accelerated currents. In this article, we
compute the magnitude of the limit currents which may be obtained
in a plasma betatron as a function of its parameters and operating
conditions.

The first results in this direction, . published in 1949 [5], were
rough estimates. Subsequently, other more accurate calculations were
published [6], but these, in our opinion, did not give sufficient infor-
mation on the characteristic quantities.

In order to confine an electrically neutral electron
beam within an annular vacuum chamber, it is neces-
sary to compensate for radial forces tending to project
the beam outward. There are several such forces:
the centrifugal forces of the accelerated particles, the
electrodynamic force associated with the magnetic en-
ergy of the beam as a whole, and, finally, the plasma
gas pressure or, if a toroidal magnetic field is used,
diamagnetic expulsion of the plasma. Let us consider
the compensation for these forces by an external mag-
netic field, i.e., high-current betatron operation.

The equations of motion of the electrons and ions
with respect to r and ¢ in a cylindrical coordinate
system (the z axis coincides with the betatron axis)
are as follows.

1) The equation of motion with respect to ¢ due to
conservation of generalized momentum for electrons
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where L is the plasma beam inductance, H%t) is the
average magnetic field within a circle of radius r, n,
is the number of electrons (or ions) per unit beam
length, Vo and V¢ are the velocities of electrons and
fons with respect to ¢; the rest of the notation is as
usual.

2) The equation of radial motion of an electron is
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Here Ar, and Ar are the deviations of the elec-
tron- and ion-beam centers from their initial position,
H(t) is the external magnetic field at radius r, Wy, 'is
the beam magnetic energy, and Wi, is a special form
for the average energy of thermal motion of the elec-
trons.

The analogous equations for ions have the form
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Here Hg is the magnetic field of the electron beam.

It is clear from equation (3) that V, = vam/M, i.e.,
the ion velocity with respect to ¢ in the nonrelativistic
region is much less than the electron velocity; there-
fore it can be ignored in equation (1). Then
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Here ! is the inductance per unit length of plasma
column. The last expression indicates that with in-
crease in the number of accelerated electrons (v ~n,)
their velocity increases more slowly than in an ordi-
nary betatron, This is due to the fact that the external
electric field increases not only the kinetic energy of
the electrons but also the magnetic energy of the beam
as a whole. Note also that the two different compo-
nents that make up the column inductance have differ-
ent effects on the electron velocity. One of these is
associated with the beam external magnetic flux and
attenuates the accelerating electric field of the beta-
tron E in the same way for all electrons. The other
part of the magnetic flux penetrates the core of the
beam with the result that the field at the center of the
beam section is smaller than at its edges. The effect
of the external portion of the flux can, of course, be
described by means of the multiplier (1 + vley‘l)'l.

The effect of the internal portion of the flux can be
allowed for by using the velocity averaged over the
beam cross section in place of the electron velocity.
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At small values of v (v « 1), the averaged velocity (or
electric field) is equal to the electron velocity at the
edge of the beam multiplied by (1 —» [29]7']. There-
fore, the total change in velocity for small vy is de-
scribed by expression (5) with I =1; + 1/2.
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Fig. 1. Radial motion of plasma
beam for A =1, The first figures
on the curves mean the following:
1) B=0,3 +10"% 2) B=1,5 « 10~%;
3) B=7+10"% the second figures
mean: 1) Avg/c = 0; 2) Avgp/e =
=107%; 3) Avy/e = 1072 4) Avy/
Je=1071,

We now write an expression for the radical force
acting on the electron beam in a betatron taking into
account the intrinsic fields. In doing so, we note that
er'1 is equal to mv% er’1 in order of magnitude and
for vy, > vig is negligibly small in comparison with the
centrifugal force r~!ymv?, Therefore it will be ig-
nored in what follows. Moreover, the magnitude of the

intrinsic magnetic force of the electron current is

. W,

ro 91y Amot
N T or ) '

vl
=5 (1 +T5)

In this connection, the right side of equation (2) may
be reduced to the form
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Using (5), we see that the force F vanishes when
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For viy ! <« 1 relationship (7) is transformed into
the usual ‘“two to one’’ rule for betatrons, while for
viy™! » 1 it reduces to the high-current formula ob-
tained for a particular case by Osovets in [7].
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Fig. 2. Radial motion of plasma
beam for A = 10, The first fig-
ures have the same meaning as
in Fig. 1. The second figure 5
corresponds to Avp/c =3 - 10-2,

Thus, for motion of the electrons along a constant-
radius orbit, the relationship between the accelerating
field E(~H°) and the sustaining field H depends upon
the number of accelerated electrons v, their energy v,
and the beam geometry ! in the accelerator. It is very
difficult to satisfy relationship (7) for a wide range of
values of v, v, and 1.

As a result, it is of interest to investigate the radial
motion of a beam of electrons in an ordinary betatron
field. In this case, the ‘““two to one’’ rule is satisfied
on a circular orbit of radius R, the field H varies ac-
cording to the usual law H = Hy(R/r)ny,, and the width
of the magnetic track is small in comparison with the
radius R. Then, letting H = H; (1 - nyE), where § =
=Ar/R and HO = 2H, (1 -¢), from (6) we obtain
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The right side of this expression vanishes at
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if we ignore terms containing & wl/v).
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Fig. 3. Radial motion of plasma
beam for A = 100, Same notation
as in Fig. 2.

This expression determines the displacement of the
equilibrium orbit of the electron beam from the equi-
librium vacuum orbit in the betatron for different val-
ues of v, ! and y. It is clear that this shift decreases
in time as the energy (i.e., y) increases, being at its
maximum when acceleration begins. Substituting the
maximum perfnissible value for the displacement, the
halfwidth of the magnetic track A, into equation (9), we
obtain the maximum value of v for which at any mo-
ment of time the equilibrium orbit of the electron
beam lies within the limits of the magnetic track.

Vmax = (1 — nb)%— (l —r —F) -t {10)

For A/R=1/10 (R/a = 10), np,=0.5and [ = 2 x
x (In (8R/a) — 1.75), Vmax is equal to 2-10~% which
corresponds to a relativistic electron current of about
300 A,

The actual position of the electron beam equilib-
rium orbit in the betatron is not determined solely by
the ratio of the intrinsic fields of the beam and the ex-
ternal fields of the betatron. Yet another factor has a
significant effect on the position of the equilibrium
orbit. It consists of the following.



J. APPL, MECH, TECH. PHYS.,, NUMBER 4

It is known that when plasma electrons are acceler-
ated various instabilities appear, as a result of which
various plasma oscillations are excited. Here, the
energy of the oscillating fields is taken from the en-
ergy of directed motion of the electrons, so that the
electron velocity v, decreases by some value Av,. We
shall assume below that Av /v, < 1 in all the cases
considered.

Electron-oscillation interaction takes place at ve-
locities which do not exceed the maximum phase ve-
locities of the plasma waves. Here, only potential
plasma waves and waves associated with {ransverse
beam deflection are considered, since it is precisely
these oscillations which are the most dangerous [1].
The maximum phase velocity of the potential waves in
an unbounded cylindrical plasma is of the order of
2¢V v/2.4, i.e., roughly speaking, approximately an
order less than the speed of light in the conditions of
interest (v ~ 107%). The maximum phase velocity of
the spiral density waves in a plasma with a toroidal
magnetic field H, is 47renRC(H¢)'1, which also com-
prises roughly 1/10 the speed of light under plasma
betatron conditions. Thus, the appearance of a A,
for electrons (which we shall refer to as the “‘detun-
ing’’) is observed at the very beginning of accelera-
tion, until the electrons acquire an energy of 5—10
keV. For the sake of simplicity, we shall assume that
this detuning is present from the very beginning of ac-
celeration. It will become clear that this assumption
does not seriously affect the final results.

A new expression for the electron velocity is ob-
tained from equation (1); in the presence of a detuning
AV{“,
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where r; is the location of the center of the electron
beam when detuning appears. Substituting into (2) for
the betatron field, we obtain

ZEedaen (- B = (12)

_ 22 (1) T . vl o az\;’ ey (1) B9,
=TT T e 1(1 )&+ oy (,1 Taor)l T TR T

rmel

In order to analyze equation (12) further, it is nec-
essary to clarify the relationship between the forces
acting on the electron beam. Thus, when the electron
beam is displaced with respect to the ion beam, a po-
larization field appears obstructing the further radial
motion of the electrons. The separation of the ion and
electron heam centers can easily be obtained from (12)
for g =0and £; = 0. For zero detuning, the shift is
equal to
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where ¢ is the radius of the plasma column. Since
«/R <« 1 and
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the beam separation turns out to be very small at all
stages of acceleration, particularly in the nonrelativ-
istic region when y? ~ 1. This means that the electric
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polarization field acts on the beam much more strongly
than does the magnetic field of the betatron. In addi-
tion, it turns out that the beam separation does not de-
pend upon the beam density, which is also quite natu-
ral. Analysis shows that Eq. (13) also remains valid
for small electron velocity shifts.

Thus, the betatron forces acting on the electron
beam through the polarization field are applied to the
jons. After a number of formal operations, the equa-
tions of radial motion of ions and electrons are ob-
tained in the form
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Electron oscillations take place about the equilib-
rium position £ oy = &5 + Afgg, where Afg, is determined
from Eq. (13).

The frequency of these oscillations almost coin-
cides with the plasma frequency, while the amplitude
is equal to Afgy.

The total radial motion of the plasma column is
given by Eq. (14). We introduce a new variable and
certain notation:
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Then Eq. (14) is written in the form
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Figures 1—3 give numerical solutions of Eq. (16) for A = 100, 10,
and 1, which corresponds roughly to the acceleration of argon-plasma
electrons in fields of 10, 30, and 100 V/cm. The values B= T+ 10-2 s
1.5« 10'2, and 0.3+ 10"% correspond to relativistic currents of 700,
170, and 85 A. The radius of the vacuum chamber is taken to be
20 cm, np = 0.5, and I = 2 (In (8R/a)— 1.75) = 5.1, The magnirtude
of Ay is shown in Figs. 1~3. The initial position of the beam is
taken to coincide with the vacuum betatron orbit.

As is clear from Figs, 13, the escape of electrons to the walls of
the vacuum chamber as a result of detuning for A = 1 and 10 takes
place at energies above 150 keV. This is much greater than the energy
at which the electrons interact with the oscillations. Therefore, in the
cases mentioned, the assumption about detuning being present from
the very beginning of acceleration is completely justified. For A = 100,
the energy of electrons escaping to the wall is 30-00 keV. Evidently,
under actual conditions, with these parameters the escape of electrons
takes place somewhat later than indicated by Eq. (16).

The results of integrating Eq. (16) show that allowance for ion
inertia leads to a significant increase in the maximum current in the
plasma betatron.

This is explained by the fact that the equilibrium orbit of the
beam approaches the vacuum orbit ever more closely with increase
in electron energy. At the same time, the ions cannot move rapidly
enough owing to their greater mass. While the necessary ion shift
takes place, the electron equilibrium orbit can approach quite close
to the vacuum equilibrium orbit,

From the form of the curves in Figs. 1-3 we can draw the con-
clusion that the equilibrium orbit of the plasma beam is stable for the
selected parameters. Analysis of Eq. (12) also leads to a similar con-
clusion.
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We give an expression for ny ensuring plasma beam
stability with respect to both r and z, omitting the sim-
ple computations:

1+ 1= P S 24 F2T< am

<nb<0 .

In conclusion we note the following. The electron-
beam inductance is assumed to be constant during the
entire acceleration cycle. Actually, this assumption
is only valid when a sufficiently strong toroidal mag-
netic field H, is used (of the order of 500 Oe). Here, if

4brnMe,H, 2 > 1

(which always holds in actual conditions), the equa-
tions of radial motion of the ions do not change; there-
fore the obtained results will also be valid for beta-
trons with a longitudinal magnetic field. The electron
motion changes somewhat: instead of oscillations with
respect to r about the equilibrium position at the
plasma frequency, we get rotation in the zr plane about
the point £; + Af e at the frequency 4rencH,™.

The author thanks A. E. Bazhanov for his help in
interpreting Eq. (16).
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